Discrete Tomography A Neural Network Approach
نویسنده
چکیده
Tomography tries to reconstruct an object from a number of projections in multiple directions. Many application domains can be imagined, but we will focus on high throughput applications, and will therefore try to reduce the number of necessary projections, while being able to generate good quality reconstructions. We apply several forms of Neural Networks, an Artificial Intelligence method. These networks are especially suited for solving underdetermined problems, and therefore well suited to our problem. Many different variants of Neural Networks are developed since its introduction; some simple, while others can consist of many nodes in many hidden layers increasing its training complexity. We will here focus on the simpler forms of Neural Networks: a feedforward (multilayer) perceptron. We present some experimental results, which demonstrate the capabilities of reconstructing high quality images using relatively simple Neural Networks.
منابع مشابه
AN INTELLIGENT FAULT DIAGNOSIS APPROACH FOR GEARS AND BEARINGS BASED ON WAVELET TRANSFORM AS A PREPROCESSOR AND ARTIFICIAL NEURAL NETWORKS
In this paper, a fault diagnosis system based on discrete wavelet transform (DWT) and artificial neural networks (ANNs) is designed to diagnose different types of fault in gears and bearings. DWT is an advanced signal-processing technique for fault detection and identification. Five features of wavelet transform RMS, crest factor, kurtosis, standard deviation and skewness of discrete wavelet co...
متن کاملمقایسه مدل شبکه عصبی مصنوعی با مدلهای رگرسیونی دادههای شمارشی در پیش بینی تعداد دفعات اهدای خون
Background: Modeling is one of the most important ways for explanation of relationship between dependent and independent response. Since data, related to number of blood donations are discrete, to explain them it is better to use discrete variable distribution like Poison or Negative binomial. This research tries to analyze numerical methods by using neural network approach and compare ...
متن کاملApplication of Wavelet Neural Networks for Improving of Ionospheric Tomography Reconstruction over Iran
In this paper, a new method of ionospheric tomography is developed and evaluated based on the neural networks (NN). This new method is named ITNN. In this method, wavelet neural network (WNN) with particle swarm optimization (PSO) training algorithm is used to solve some of the ionospheric tomography problems. The results of ITNN method are compared with the residual minimization training neura...
متن کاملA Neural Network Approach to Real-Time Discrete Tomography
Tomography deals with the reconstruction of the density distribution inside an unknown object from its projections in several directions. In Discrete tomography one focuses on the reconstruction of objects having a small, discrete set of density values. Using this prior knowledge in the reconstruction algorithm may vastly reduce the number of projections that is required to obtain high quality ...
متن کاملطبقه بندی و شناسایی رخسارههای زمینشناسی با استفاده از دادههای لرزه نگاری و شبکههای عصبی رقابتی
Geological facies interpretation is essential for reservoir studying. The method of classification and identification seismic traces is a powerful approach for geological facies classification and distinction. Use of neural networks as classifiers is increasing in different sciences like seismic. They are computer efficient and ideal for patterns identification. They can simply learn new algori...
متن کاملGENERATION OF MULTIPLE SPECTRUM-COMPATIBLE ARTIFICIAL EARTHQUAKE ACCELEGRAMS WITH HARTLEY TRANSFORM AND RBF NEURAL NETWORK
The Hartley transform, a real-valued alternative to the complex Fourier transform, is presented as an efficient tool for the analysis and simulation of earthquake accelerograms. This paper is introduced a novel method based on discrete Hartley transform (DHT) and radial basis function (RBF) neural network for generation of artificial earthquake accelerograms from specific target spectrums. Acce...
متن کامل